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Sequence dependence of self-interacting random chains 

Anders kbackt and Holm Schwarze$§ 
Department ofTheoretical Physics, University of Lund Salvegatan 14A, 5-223 62 Lund, Sweden 

Received 30 September 1994, in final form 16 January 1995 

Abstract. We study the thermodynamic behaviour of the random chain model proposed by 
Iori, Marinari and Parisi and how this behaviour depends on the actual sequence of intenuions 
along lhe chain. The properties of randomly chosen sequences are compared to those ofdesigned 
sequences obtained through a simulated amealing procedure in sequence space. We show that 
for designed sequences the transition to the folded phase takes place at a smaller strength of the 
quenched disorder. As a result, folding can be relatively fast for these sequences. 

1. Introduction 

The ability of natural proteins to fold into globular states with a well-defined shape is a 
fascinating feature which has attracted considerable attention (e.g. [1,2]). However, it is 
still not understood how the information about the three-dimensional native structure of 
a protein is coded in the linear sequence of its components and how proteins search the 
con6,wation space on reasonable timescales to find the native state 131. 

In recent years there has been an increasing interest in understanding the essential 
mechanisms that govern the foldiilg of real proteins by studying simplified modeIs of 
random self-interacting chains or random heteropolymers [U]. Although these models 
do not share the rich details of biological proteins, there is hope that a better understanding 
of such models will help to find and understand the universal features responsible for the 
unique behaviour of real proteins. An analytic treatment of these models has been put 
forward within mean field theory employing the replica method [5, 6, 91, but the problem 
is still far from being solved [lo]. 

Recently, Iori, Marinari and Parisi (IMP) 171 have suggested a model of a random self- 
interacting chain displaying features that make it of interest for the understanding of real 
proteins. In particular, IMP have given evidence for the existence of a folded glassy phase 
with long relaxation times and few stable states with fairly well-defined shapes. 

Following their approach, we will be concerned with a chain of N monomers in a 
continuous three-dimensional space. The interaction between the monomers is modeIled by 
a Lennard-Jones (U) potential with an attractive part that contains a quenched disorder. We 
study the thermodynamic properties of this model using the hybrid Monte Carlo method 
[ 111 which has recently been successfully applied to the simulation of polymers with self- 
repulsion [ 121. For randomly chosen realizations of the quenched disorder we obtain results 
similar to those found by IMP. These results confirm that the generic behaviour, at strong 
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quenched disorder, exhibits interesting similarities to that of globular proteins. For the 
typical chain, however, it appears impossible to identify a state corresponding to the unique 
native structure of a protein. Therefore, it is of interest to discover whether there are 
special sequences of interactions along the chain for which there exists a state that is 
thermodynamically dominant, and kinetically accessible in reasonable times. Shakhnovich 
and Gutin [13,14] have proposed a thermodynamically oriented method for finding such 
sequences and have applied it to a lattice model for protein folding. Using the present 
model we test the generality of this method for sequence design, which involves a simulated 
annealing procedure in sequence space. By varying the strength E of the quenched disorder, 
we study the transition to the folded phase and the behaviour in this phase for designed and 
random sequences. The results obtained for these two types of sequence differ markedly, 
even though some quantities, like the radius of gyration, show a fairly weak sequence 
dependence. The most important difference is that the dominance of a single state sets in at 
a relatively small E = EF for designed sequences. As the dynamics tends to be faster when 
the quenched disorder is weaker, this means that, indeed, the designed sequences are more 
likely to satisfy both the thermodynamic and the kinetic requirements for folding. Notice 
that the behaviour of sequences with a small E F  should be similar to that of sequences with 
a high folding temperature. In fact, using a lattice model with contact interactions, Sa i  et 
al have shown that there is a strong correlation between high folding temperature and good 
folding properties [ 1.51. 

This paper is organized as follows. In section 2 we describe the model introduced by 
IMP and the hybrid Monte Carlo method used in our simulations. In section 3 we discuss 
some results about the structure of the energy landscape of the random self-interacting chain 
that can be extracted from our simulations. In section 4 we discuss the folding transition of 
the model and investigate the iduence of the sequence of interactions on this behaviour. 
Section 5 is a summary. 

A Irbifck and H Schwarze 

2. The model 

Throughout this paper we consider a Linear chain of N sites or monomers, with positions 
in three-dimensional continuous space given by zj, i = 1,. . . , N .  We eliminate the overall 
translational degree of freedom by assuming that the centre of mass is held fixed at the 
origin, i.e. E,"=, zi = 0. Alternatively, the system can be described by the N - 1 bond 
vectors bj = zj+l - zj, j = I ,  . . . , N - 1, connecting adjacent sites. The Hamiltonian of 
the system is given by 

where rij = llzi - xjcjll is the Euclidean distance between sites i and j .  The first term in 
equation (1) is just a harmonic attraction which holds adjacent sites together and enforces the 
chain structure. The remaining terms are a standard LJ potential, in which the van der Waals 
attraction contains a quenched disorder. The  j's are independent random variables drawn 
from a uniform distribution with zero mean and unit variance. Hence, the potential between 
sites i and j > i + 1 has a minimum at rij = [ 2 R / ( A  + cqjj)]'I6 if qtj  z - A / € .  This 
model has been studied by IMP using standard Monte Carlo techniques in three dimensions 
and subsequently by Fukugita eral [8] in two dimensions. IMP studied the behaviour of the 
model for different values of A and E ,  keeping R = 2 and ksT = 1 fixed. For E = 0 they 
showed that a transition occurs near A = 2: from a coil phase at small A to a shapeless 
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globule phase. Using A = 3.8 they then found glassy behaviour with few stable states for 
sufficiently large strength e of the disorder. These states persisted for long periods in the 
Monte Carlo simulations, and the system returned to the same state after having visited 
several completely different ones. The transition from the shapeless globular phase to the 
glassy phase was found to be very abrupt. Fukugita et al studied the same model in two 
dimensions and explored the level structure of the lowest-lying states. Their results show 
the emergence of a single global minimum with a wide gap to the next lowest energy 
level as 6 increases. In addition to the (A,  E )  phase structure, Fukugita er al investigated 
the temperature phase structure of the model; for a folding sequence they found that the 
transition from a coil state at a high temperature to a unique folded state at a low temperature 
takes place through a shapeless globule phase. This behaviour has also been observed using 
a different model [16]. 

To simulate the behaviour of the system defined by the Hamiltonian in equation (1) at 
constant temperature, we have employed the hybrid Monte Carlo method [ 111. A discussion 
of the use of this general method in simulating proteins can be found in [17], while the 
implementation used here is described in [12]. We give a brief description of this scheme, 
and refer to [E] for further details. The simulation is described most easily by using the 
bond variables bi. It is based on the evolution arising from the fictitious Hamiltonian 

where 1 ~ i  is an auxiliary momentum variable conjugate to bi. The first step in the algorithm is 
to generate a new set of momenta 1 ~ ;  from the equilibrium distribution P(?ri) o( exp(-$rf). 
Starting from these momenta and the old configuration, the system is evolved through a 
finite-step approximation of the equations of motion. The configuration generated in such 
a trajectory is finally subject to an accept-or-reject question. The probability of acceptance 
in this global metropolis step is min(l,exp(-A&c)), where AHMC is the energy change 
in the trajectory. This accept-or-reject step removes errors due to the discretization of the 
equations of motion. The algorithm has two parameters, namely the step size 6 and the 
number of steps in each trajectory n. We have used a fixed trajectory length n8 = 1, and 
the remaining free parameter has been adjusted so as to have a reasonable acceptance rate. 

3. The structwx of the energy surface 

Using the hybrid Monte Carlo method we have simulated the behaviour at constant 
temperature of the model described in the previous section. To extract more information 
about the energy landscape from these simulations, we have employed a deterministic 
quenching procedure which brings the system to a nearby local energy minimum. This 
minimization has been carried out by using a conjugate gradient method. The quenching 
procedure provides information about the energy level spectrum and has been applied to 
models for protein folding in [18,8]. The removal of thermal noise is very useful when 
studying the evolution of the system. 

In figure 1 we show the evolution of the actual and the quenched energy in a Monte 
Carlo run for N = 8. Following IMP we have used A = 3.8, R = 2, e = 6 and kBT = 1. 
Throughout this paper we will only vary the values of A and 6, i.e. the relative strength of 
the deterministic and random parts of the attractive contribution to the U potential, while the 
values of R and ksT will be kept fixed. IMP have reported runs which indicate that a change 
in T roughly corresponds to the rescaling of the other parameters. While the unquenched 
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Figure 1. Monte Carlo evolution of lhe energy (the data points are connected by a line) and the 
quenched energy (diamonds 0) for N = 8, A = 3.8 and 6 = 6. Measurements have been taken 
every 100 iterations. 

data are very noisy, the quenched measurements show a clear structure. The system only 
visits a small number of different energy levels and spends more than 99% of the time 
in the lowest eight of these. From the dynamics point of view these eight levels can be 
divided into two groups each consisting of four levels. The system moves relatively easily 
between levels belonging to the same group, while transitions from one group to the other 
are rare; less than 1% of all transitions are between states of different groups. Therefore, 
these groups correspond effectively to two different thermodynamic states, separated by a 
high free-energy barrier. 

A study of the difference between the configurations corresponding to these levels 
suggests that each group can be thought of as a fairly narrow ‘valley’ in the free-energy 
landscape. To get a measure of the distance between two configurations with distance 
matrices r; and r;. it is convenient to use a quantity introduced by IMP which employs the 
w part of the energy between pairs of sites, given by 

where 
R A  E?.=-- -  

LJ 012 ‘0.6 
‘ij ‘J 

(4) 

and similarly for E;.  A closely related measure for monitoring dynamical evolution has 
been introduced by Thirumalai et al [I91 and applied to protein folding in [20]. The 
parameters A and R in equation (4) are chosen as in the corresponding Monte Carlo run, 
although the results are not sensitive to this choice. This definition does not require the 
elimination of any translational, rotational or reflectional degrees of freedom and emphasizes 
local differences in the energetic state of the sites. The distances between the configurations 
corresponding to the eight energy levels discussed above are, indeed, compatible with the 
existence of two groups of structurally and thus energetically similar states. The distances 
between states within the same group all lie in the interval 0.07 < A:,, e 0.17 and are 
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Figure 2. Monte Carlo evolution of the quenched energy for a chain with N = 16, A = 3.8 and 
c = 6. The full and dotted lines represent results obtained using ordinary Monte Carlo and five 
different initial configurations. The diamonds represent the result of a run in which the auxiliary 
Hamiltonian has been used, as explained in the text. Measurements have been taken every 100 
trajectories. 

The existence of different valleys in the free-enerm landscape affects the dynamics of 
the system even more strongly as the system size is increased. In figure 2 we show the 
results of five different simulations for a chain with N = 16. The values of A, R ,  E and 
ksT are the same as before. The difference between these runs is that they were started 
from different configurations, while the realization of the disorder was not changed. After 
an initial period of relaxation, the system moves only between a small number of different 
levels. The sets of levels visited in the different runs are disjoint, which shows that there are 
several different groups of states, and in each run only one or very few of the corresponding 
valleys are explored. This result is in agreement with the assumption that the heights of the 
baniers separating different valleys-and thus the time necessary to cross them-increases 
with the system size. 

The structure of the free-energy landscape makes a numerical study of these systems 
computationally very demanding. Therefore, it would be desirable to develop improved 
Monte Carlo schemes in order to efficiently explore the configuration space. We have 
tested a simple strategy with a more modest aim, namely to find the low-lying energy levels 
faster. To motivate this scheme, we first note that the monomers act to some extent as hard 
spheres due to the repulsive r-” term. Minimization of the energy involves finding out 
how to pack these spheres under the influence of the attractive terms. In general, this is, of 
course, a very difficult task, but a simplification may occur for large E .  If E is large then the 
depths of the U potentials vary considerably, between zero (purely repulsive potential) and 
( A  + €J?)*/4R. It may then be advantageous to pay particular attention to the strongest 
interaction terms, at least if the chain is not very long. The procedure considered here 
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is a simple way to do that. As before we use the hybrid Monte Carlo algorithm, but 
now we let the evolution of the system be governed by an auxiliary Hamiltonian. Initially 
we take this Hamiltonian to be the full Hamiltonian with all rd terms removed. In the 
absence of these terms, the system is not frustrated and therefore easy to simulate. To this 
Hamiltonian we first add the r-6 term with largest q; j ,  then the term with next largest vi,, 

and so on. This is continued until all the r r 6  terms have been included. After each change 
of the auxiliary Hamiltonian a short simulation is performed. In our calculations each of 
these simulations consisted of 100 trajectories and the trajectory length was the same as 
before. We have tested this procedure on the chain studied in figure 2, again using five 
different initializations. In the present case, the results from the various runs were similar. 
In particular, the sets of energy levels visited at the end of the runs were identical. The 
evolution of the quenched energy in one of  these runs is given in figure 2. This figure 
shows that the procedure is successful in the sense that new energy levels show up which 
are lower than all those found in the ordinary Monte Carlo runs. We stress that the original 
Hamiltonian and not the auxiliary one has been used in these measurements. Therefore, 
we find it remarkable that these low-lying levels appear for the iirst time when less than 
half of the r-6 terms are present. The weakest 60% of these terms seem to have very little 
influence on the structure of the chain. The procedure described here will be discussed in 
more detail in a forthcoming paper [ZI]. 

Even though there are several differences, it may be of interest to compare the potential 
considered here with a more realistic one. For this purpose we consider the simplified 
potential for structure determination that was proposed in [=I. A central ingredient of this 
potential is a species-dependent U interaction which represents the effects of hydrophilicity 
and hydrophobicity. Each amino acid residue is described by one backbone site and 
one or two sites representing the side chain. To make a comparison possible, we have, 
therefore, converted the U parameters used in [22] into parameters appropriate for the 
chain representation used here. Using these results we have generated distributions of 
the U parameters by weighting the residues according to their frequency of occurrence in 
proteins [2]. The distribution of the r 4  coefficient allows both positive and negative values. 
Averaging over potentials with attractive r-6 term, we find that the mean and variance of 
the depth of the potential -H,,,j,/ksT are 3.1 and 4.5 respectively. In the model considered 
in this paper the corresponding values are 8.4 and 56.3 for the parameters studied above. In 
order to obtain a distribution of the potentials that is more closely related to the one used in 
[22] we will use the parameters A = 0 and R = 2 in the following section. For this choice 
and for B = 4.5 the corresponding mean and variance are 2.5 and 5.1. Furthermore, due to 
the absence of extremely deep minima the dynamics can be expected to be somewhat faster 
for this choice of parameters. 

4. Optimizing the realization of the disorder 

In the previous section we have seen the strong dependence of the dynamical behaviour 
of this model on the actual choice of the random part of the interaction. This observation 
leads to the question of how the behaviour of an 'optimized' or 'selected' sequence would 
differ from that of randomly chosen chains. In particular we will be concerned with the 
folding properties of the IMP model and its dependence on the realization of the quenched 
interactions. To do this we follow an idea proposed by Shakhnovich and Gutin [13.14] 
of using 'protein design' to study the folding properties of model proteins with selected 
sequences. Shakhnovich and Gutin studied chains of length N = 80 on a cubic lattice with 
a contact interaction between them. In order to find a sequence that provides a very low 
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energy on an arbitrarily chosen target structure, they used a simulated annealing procedure 
in sequence space keeping the positions zi of the sites fixed. In subsequent lattice Monte 
Carlo rum in configuration space with the optimized sequence kept fixed the designed 
chains folded into the unique mget configuration after about IO6 Monte Carlo steps. The 
energy spectra of the designed chains were characterized by a global energy minimum 
separated from the remaining energy levels by a pronounced gap. It was argued that the 
existence of this energy gap in the designed chains is responsible for the fast folding times; 
out of a large number of randomly generated sequences only those which showed such 
a gap in their energy spectrum folded fast [14,15]. Furthermore, it is interesting to note 
the relation between the thermodynamic design of the chains and the problem of kinetic 
accessibility of the target configuration. The sequences that minimized the energy of a given 
target configuration were also able to find this structure during the subsequent Monte Carlo 
simulation in reasonable times [14]. 

In order to study the sequence dependence of the properties of the IMP model we have 
concentrated on a specific choice of the parameters for the deterministic part of the LI 
potential (A = 0, R = 2). Within the range of E values considered here, this choice 
produces distributions of U potentials which seem reasonable compared to more realistic 
models as discussed in the previous section. The results presented below have been obtained 
for N = 16 and three different realizations of the qij’s which will be referred to as sequence 
1, 2, and 3 respectively. 

As the relative strength E of the random part of the potential is increased we observe a 
behaviour which is in agreement with the one reported in the original work by IMP [7]: for 
E = 0 the system is in an open coil state characterized by a large end-to-end distance 

re = (Ibl -mil) 

and a large radius of gyration 

The system can move around rather freely in the energy landscape and visits a large number 
of local minima (see figure 3). 

At around E sx 3.5 we find a transition to a globule phase indicated by a drop in re and 
rsur (see figure 4). In this phase the chain has compactified, but the individual monomers 
can still move around freely. Correspondingly, the system still visits a large number of 
states as can be seen from figure 3. 

As mentioned in section 2, IMP showed that the system is in a glassy phase for large 
E if A = 3.8. Our results show that the large E behaviour is also glassy for A = 0. For 
A = 0 the transition to the glassy phase takes place near E = 6.5. The transition is not 
observable in the behaviour of r, and rsy (see figure 4) but can clearly be detected by 
a dramatic increase in the autocorrelation times. This is illustrated in figure 5 where we 
show estimates of the integrated autocorrelation time of the quenched energy, rEq. The 
integrated autocorrelation time = 4 Cz_-,C(t)/C(O), 
where C(t)  = (0 ( t )O(O))  - (0)’ is the correlation between measurements separated by 
t eajectories. The fact that rEq is much larger at E = 7 than at small E can also be seen 
directly from figure 3. At E = 7 the system tends to move between a small number of 
energy levels over extended periods of time and revisits the same set of levels after several 
hundreds of trajectories. In figure 6 the relative number of times 6 the system was found 
in the most frequently visited quenched-energy state is plotted against E .  While 6 is below 

of a quantity 0 is given by 
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Figure 3. Evolution of the quenched energy for N = 16, A = 0 and different vdues of 6 
sampled every 5 Uajectories: (a) 6 = 2. (b) e = 4.5. (c) e = 7. The left column is  the randomly 
chosen sequence (sequence 1). The right column is the same set of qj)'s, but after optimization 
(sequence 1'). 

10% for small values of E there is an increase in the dominance of a single state if E is 
increased above 6.5. 

In the following, we investigate how this behaviour is altered if the entries of the 
interaction matrix qij  are not placed randomly along the chain but such that the energy for 
a certain target configuration is minimized. An arbitrary target configuration (see figure 7) 
was created randomly with a radius of gyration of rmr w 1 .l, a typical value for the folded 
chains with randomly placed interactions. For a given realization q j  of the random part 
of the interaction matrix we have permuted the 120 entries so as to minimize the energy 
of equation (1) for the target configuration. In order to search the approximately lozw 
possible permutations we have used straightforward simulated annealing in sequence space. 
This procedure ensures that the statistics of the vij's remains unchanged in the optimized 



L" 

Sequence dependence of self-inferacting random chains 2129 

. .  
1 1  1 '  ' 1  ' 1  ' ( 1  

0 1 2  3 4 e 5  6 7 8 

5 1  4 , , > ' ' L * ; L I  

3 

2 

1 
. .  . .  

0 1 2 3 4 5 6 7 6  
e 

3.5 

3 

2.5 

2 

1.5 

1 
0 1 2  3 4 e 5  6 7 8 

Figure 4. End-toad distance (left) and the radius of gyration (right) as functions of B for 
different random sequences (top) and the respective optimized sequences (bottom). 
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Figure 5. Autocorrelation times of the quenched energies for Lhe three random sequences 

sequence, since only the indices are permuted without changing the values of the interactions. 
Starting from the three random sequences studied above, we have created their optimized 
counterparts (called sequences l', 2* and 3' respectively) which yielded the lowest energies 
found for the target configuration. Subsequently, we have performed hybrid Monte Carlo 
simulations in configuration space for the sequences starting from random coil-like initial 
configurations. The results are shown in figures 3, 4 and 6. 

As can be seen from figure 4 there is no significant sequence dependence detectable 
in the macroscopic quantities r,  and rPF. However, the structure of the free energy of 
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Figure 7. Projection of the target wnfrguration wed for lhe optimization of the sequence of 
interactions. 

the optimized sequences differs significantly from that of the random chains, as reflected 
by the dynamical evolution. The dominance of a single quenched-energy state sets in at 
much smaller values of E than for random sequences (see figures 3 and 6). The evolution 
of quenched energies of sequence I *  in figure 3 shows that already for small values o f f  a 
few energy levels are more favoured than others. As E is increased the formation of a small 
number of dominant low-lying states already occurs at around E w 4, almost simultaneously 
to the compactification at E w 3.5. It is remarkable that the dominant states are already 
found after a few hundred trajectories and typically dominate the dynamical evolution over 
the entire run. At E = 7 chain 1' gets trapped after a few trajectories in a single state, 
which is identical to the quenched state that would be reached if the quenching was started 
from the target configuration. 

The results for the sequences 2' and 3* are qualitatively similar. Howrever, in those cases 
we found two dominating states in the respective large E regimes and the systems frequently 
moved between them. This behaviour is reflected by the somewhat lower 6 values in figure 6. 
Furthermore. at E = 8 sequence 3' did not find the target configuration immediately as was 
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the case for the first two sequences. Chain 3' spent the first 10000 trajectories above a 
different local minimum with somewhat higher energy before the transition to the target 
configuration occurred; the target state dominated for the remaining 90000 trajectories of 
this run. However, for E values just above 4.5 and up to E Fti 7, sequence 3* displayed the 
fast dynamics as observed for the other chains. 

Finally, let us summarize the results for the folding properties of optimized and 
random sequences, The main question addressed is whether the different sequences 
exhibit a thermodynamically dominant state which, under the same conditions, is kinetically 
accessible. From figure 6 it can be seen that a significant weight of a single state is obtained 
at relatively small E for optimized sequences. In fact, 8 is roughly the same for random 
sequences at E = 7 as for optimized ones at E = 4.5. This difference in E has a strong effect 
on the dynamics of the two systems, as can be seen from figure 3. While the evolution of 
Eq for the random sequence at E = 7 is dominated by different, well separated gmups of 
levels, it shows frequent transitions between all states involved for the optimized sequence 
at < = 4.5. This observation indicates the presence of high energy barriers in the random 
case at E = 7, which slows down the dynamics considerably. In the optimized case, on the 
other hand, high energy barriers seem to be absent; therefore, folding times should be much 
shorter. From these results we conclude that optimized sequences are much more likely 
to satisfy both the thermodynamic and the kinetic requirements for folding. The design 
method of [13,14] is, therefore, also applicable to the present model. 

5. Summary and outlook 

In this paper we have studied the random heteropolymer model proposed by IMP. Our 
main focus has been on the question of how the thermodynamic behaviour depends on the 
sequence of interactions along the chain. This has been studied for a set of parameters 
slightly different from that used by IMP. The choice considered here gives rise to similar 
thermodynamic behaviour and has been made to obtain a somewhat faster Monte Carlo 
evolution. Our comparison with the more realistic model of [22] suggests that the parameters 
chosen are reasonable. 

For the choice of parameters originally used by IMP we have found a strong dependence 
of the dynamical behaviour on the specific choice of the disorder. We have demonstrated 
that for some chains there exist different valleys in the freeenergy surface, each of which 
contains a number of local minima. As the system size is increased it gets more and more 
dficult to cross the free-energy barriers between these valleys and the system tends to 
explore only one or just a few valleys. We have found that the behaviour is similar for 
R = 2, A = 0 and strong quenched disorder. 

The results mentioned so far refer to randomly chosen sequences. In addition to 
those, we have studied designed sequences obtained by the thermodynamically oriented 
procedure suggested in [13]. The thermodynamic behaviour of these two types of sequence 
has been compared. The results show that the extent of the chain, as measured by the 
radius of gyration, depends only weakly on the sequence. In particular, they show that the 
compactifcation of the chain takes place at approximately the same strength of the quenched 
disorder E for different sequences. At large E the density of low-lying energy levels is low 
and the bottom part of the spechum dominates thermodynamically. The sparseness of the 
bottom part of the spectrum sets in earlier for designed sequences. For these sequences 
it is possible to find values of E where the lowest level has a large statistical weight and 
can be reached quickly. In order to have a significant weight of a single state for random 
sequences, it is necessary to use a considerably larger E which makes the folding process 
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much slower. Hence, the thermodynamic design strategy suggested by Shakhnovich et ai is 
also applicable here and yields chains that tend to fold faster than their random counterparts. 

Even though the IMP model displays interesting features for comparably short chains, 
it would be desirable to study larger systems in order to investigate the size dependence of 
our results. However, due to the slow dynamics in the glassy phase this demands very long 
simulations or more efficient Monte Carlo schemes. We have demonstrated a simple strategy 
to find the low-lying states for a strong quenched disorder, but to find a suitable algorithm 
for the exploration of the thermodynamic properties of long random heteropolymers remains 
a challenging problem. 
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